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LEmER TO THE EDITOR 

Population point process model of antibunched light 
and its spectrum 

S K Srinivasan 
Department of Mathematics, Indian Institute of Technology, Madras 600 036, India 

Received 25 November 1988 

Abstract. The letter proposes a model of population of photons in which emissions occur 
through a process of non-Markov evolution. The photon population statistics are shown 
to be antibunched in their character with intensity correlation characteristic of resonant 
fluorescence and other associated phenomena. 

The object of this letter is to demonstrate the possibility of accommodating antibunched 
light within the framework of the population point process model of cavity photons 
[l-41. Although antibunching was confirmed around 1977 by the measurement of 
photon statistics in resonance fluorescence [ 51, there are still many attempts to measure 
the statistics of photocounts of other sources of light such as depleted cascade emission 
[6] or radiation from atoms excited by a space-charge-limited electron stream [7,8]. 
There are now available several surveys [9-111 dealing exclusively with antibunching 
and the topic continues to be interesting in the broad area of non-linear optics 
particularly in view of its connection to other phenomena like sub-Poissonian behaviour 
and squeezing [12]. Since population models form the basis for the description of 
various characteristics like thermal behaviour and lasing, it is considered worthwhile 
to report some recent findings that would enable us to conclude that such models are 
viable enough to yield information on spectral properties of the resulting radiation. 

The starting point is the population model of Shimoda et al [ l ]  as modified by 
Shepherd [2] and the author [3,4] to include the detection process. To take into 
account the non-Markov effect arising from non-uniformity in the time rate of emission, 
we modify the processes of stimulated and spontaneous emission. To be precise, we 
assume that the process of spontaneous emission taken in isolation forms an ordinary 
renewal process whose interval spans are sums of m positive independent random 
variables each with a negative exponential distribution. To be specific we choose m = 3 
and the parameters as vl, v2 and v3. J.ikewise the stimulated emissions due to any 
single photon can be thought of as a general point process of emissions in which the 
time to the first emission is the sum of ( n  + 1 )  positive independent random variables 
each with a negative exponential distribution with parameter A i ,  with subsequent 
emissions occurring at a constant rate a = A,+, . Thus each of the photons is assumed 
to evolve in time, independent of each other, through a series of phases, the sojourn 
through the first n phases being completed before the actual emission takes place, the 
rate of emission itself being a constant a in the final (residuary) phase. The emitted 
photons, in turn repeat the process, independent of other photons. The (cavity) 
absorption rate (which is identified as the death rate per individual photon) is assumed 
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to be a constant equal to p in all the phases except the last where it is taken to be 
equal to An+,+p.  This particular differential choice of the parameter is to facilitate 
thermal equilibrium wherever it is needed. The field detector interaction is modelled 
as an emigration process with a constant rate 7 per individual irrespective of its state 
of evolution in phases. In the original model of Shimoda et a1 [l], the parameters m 
and n correspond to the values 1 and 0 respectively and v, the parameter of the 
exponential distribution, is indeed the parameter of the Poisson process which charac- 
terises the spontaneous emission process. It is to be noted that the evolution through 
phases is only a device to handle the non-Markov emission process. We now proceed 
to analyse the model with special reference to the detection process so that the intensity 
correlation can be explicitly characterised. For convenience we choose n = 2 and 
introduce the following notation: 

Z( t ) :  the state process of spontaneous emission (immigration) taking values 1,  2, 
3 corresponding to m = 3; 

X i ( t ) :  the size of the cavity photon population in phase i ( i  = 1,2); 
X (  t ) :  the total size of the cavity photon population; 

g i (w ,  t )  = E [ w ~ ( ' ) I x ( o )  = xi(0) = I, v1 = v2 = v3 = 01 (1) 

G i ( w ,  t )=E[wX( ' ) IZ (0 )=i ,X(O)=O]  (2) 
where E stands for the mathematical expectation of the quantity within the brackets. 
The generating function defined by (l), specially conditioned, corresponds to the 
immigration taboo process and facilitates the solution. The exponential nature of the 
lifespan of the phases leads to the following differential equations [3,4]: 

ag3( wy t ,  = -( A3 + p + 77 + a ) g 3 (  w, t ) + ag3( w, t)g1( w, t ) + p + 7) + A 3  (4) 
at 

with the initial conditions 

gi(w, 0) = w Gi( W, 0) = 1 i = 1 ,2 ,3 .  ( 6 )  

A1 = A 2 =  A 3 = A  = (Y 

For purposes of illustration we further set 

v1 = v2 = v3 = v. 

In order to characterise the detection process, we need the equilibrium distribution of 
cavity photons as well as the first few moments of gi (w,  t ) .  The detection process is 
best characterised by the two time correlation h2( tl , t2)  where h2( t l  , t2)dr,dt2 represents 
the inclusive probability that a photon is detected in each of the intervals ( t ,  , tl + dt,) 
and ( t 2 ,  t 2 ,  t2 + dt,) and an experimentally significant measure is the equilibrium value 
h S t J  t )  of h2( tl 9 t z )  given by 
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In addition we also need the equilibrium first-order function hl(  ) where 

h,( ) = lim h,( t )  
1-00 

represents the stationary rate of detection and is given by 

h,( * )  = lim a E [ X ( t ) ] .  
1'00 

Introducing the notation 

ai( t )  = - b,(t)=- 
aw agi I w = l  

h , ( * ) =  V A l ( W )  

hSt,(t) = hl(.)hyE(t)+B1(~)772al(t) 

aw2 a 2 g i l  w = l  

we find, by the use of combinatorial arguments, 

where hF"(t) is the inclusive probability of a detection in an infinitesimal interval of 
time following t, conditional on the cavity population being in equilibrium at the (time) 
origin where a photon has been detected by the detector. Thus our objective would 
be accomplished if we obtain the moments Ai(t )  and B i ( t )  and the function hyE(t). 

The moments can be obtained by a straightforward process of differentiation of 
equations ( 3 ) - ( 5 )  and solving them by the use of the Laplace transform technique. 
We skip the details and give the final Laplace transform solution: 

aT(s)v4-'(v+s)i-1 
s(3 v2 + 3 vs + s2) 

A T ( s )  = 

bT( s)  = A 2 [ s  + 4h + 2 p  + 277]/[ D( s )D(  s / 2 ) ]  

D ( S )  = ( S  + A  + 77 + P ) ~ -  h 2  

where we have used * as a superscipt to denote the Laplace transform. An explicit 
expression for the function hyE(t)  can be obtained by the use of combinatorial 
arguments : 

Using (13 )  and (14) ,  we finally obtain, after some calculations, 

V 
3 K  

h,( * )  =- 
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where 

2 
B,(co) =- 

K 2 + 3 K + 3  2 L + K  

D , = K Z * 3 K + 5  K = ( P +  v ) / v  L =  A / v  (18) 

J l ( t )  =e-3Y"2[-K3fisinfitv/2+ K(6-  K2)cos&tv/2]/(9LD+D-). (19) 
Equations (15) and (16) are the main results from which many useful conclusions can 
be drawn. A measure of bunching W can be introduced by [4,16] 

8 = hStY(O)/ hst,(m) (20) 

and we find 

2 + )  ( K 2 + 3 K  +3  2L+ K 
8 = 9 K 2 B , ( ~ )  = 3 

from which we readily conclude that there are many physically feasible choices of K 
and L for which 8 is less than unity, leading to antibunching. For such a choice, (16) 
shows that apart from a constant the correlation consists of a pure exponential function 
with argument -Kvt and an exponential function with argument -3 vt/2 modulated 
by sine and cosine functions. Such correlations were noticed earlier in the literature 
in the context of resonance fluorescence and other associated phenomena [5,13-151. 
It is also interesting to note that intensity correlations with further modulations can 
be accommodated by increasing the value of m. 

A special case of interest arises when L = 0. This is a generalisation of the coherent 
model of Shepherd [2]. In that case we can eliminate the pure exponential term by 
setting K = 5.45 in which case hs,,( a )  is given by 

h,,,(t) = ( -$)' [ 1 - (1.91 sin -+0.88 a u t  cos "Ut) - (22) 2 2 

and the bunching factor is nearly one eighth. Thus the population point process model 
is viable enough to describe many facets of the cavity radiation and characterise the 
photon statistics. 

Finally we observe that the structure of the correlation function as described by 
(16) remains the same for the general case in which an arbitrary number ( n  + 1) of 
phases (in the process of stimulated emission) are introduced. In this case the formula 
for B,(co) as given by (17) still holds good provided we replace the second term within 
the brackets by L"/[( K + L)" - L"]. Further details relating to the structure of the 
various formulae presented above will be published elsewhere. 
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